Combining data#
For combining datasets or data arrays along a single dimension, see concatenate.
For combining datasets with different variables, see merge.
For combining datasets or data arrays with different indexes or missing values, see combine.
For combining datasets or data arrays along multiple dimensions see combining.multi.
Concatenate#
To combine concat
. concat
takes an iterable of DataArray
or Dataset
objects, as well as a
dimension name, and concatenates along that dimension:
In [1]: da = xr.DataArray(
...: np.arange(6).reshape(2, 3), [("x", ["a", "b"]), ("y", [10, 20, 30])]
...: )
...:
In [2]: da.isel(y=slice(0, 1)) # same as da[:, :1]
Out[2]:
<xarray.DataArray (x: 2, y: 1)>
array([[0],
[3]])
Coordinates:
* x (x) <U1 'a' 'b'
* y (y) int64 10
# This resembles how you would use np.concatenate:
In [3]: xr.concat([da[:, :1], da[:, 1:]], dim="y")
Out[3]:
<xarray.DataArray (x: 2, y: 3)>
array([[0, 1, 2],
[3, 4, 5]])
Coordinates:
* x (x) <U1 'a' 'b'
* y (y) int64 10 20 30
# For more friendly pandas-like indexing you can use:
In [4]: xr.concat([da.isel(y=slice(0, 1)), da.isel(y=slice(1, None))], dim="y")
Out[4]:
<xarray.DataArray (x: 2, y: 3)>
array([[0, 1, 2],
[3, 4, 5]])
Coordinates:
* x (x) <U1 'a' 'b'
* y (y) int64 10 20 30
In addition to combining along an existing dimension, concat
can create a
new dimension by stacking lower dimensional arrays together:
In [5]: da.sel(x="a")
Out[5]:
<xarray.DataArray (y: 3)>
array([0, 1, 2])
Coordinates:
x <U1 'a'
* y (y) int64 10 20 30
In [6]: xr.concat([da.isel(x=0), da.isel(x=1)], "x")
Out[6]:
<xarray.DataArray (x: 2, y: 3)>
array([[0, 1, 2],
[3, 4, 5]])
Coordinates:
* x (x) <U1 'a' 'b'
* y (y) int64 10 20 30
If the second argument to concat
is a new dimension name, the arrays will
be concatenated along that new dimension, which is always inserted as the first
dimension:
In [7]: xr.concat([da.isel(x=0), da.isel(x=1)], "new_dim")
Out[7]:
<xarray.DataArray (new_dim: 2, y: 3)>
array([[0, 1, 2],
[3, 4, 5]])
Coordinates:
x (new_dim) <U1 'a' 'b'
* y (y) int64 10 20 30
Dimensions without coordinates: new_dim
The second argument to concat
can also be an Index
or
DataArray
object as well as a string, in which case it is
used to label the values along the new dimension:
In [8]: xr.concat([da.isel(x=0), da.isel(x=1)], pd.Index([-90, -100], name="new_dim"))
Out[8]:
<xarray.DataArray (new_dim: 2, y: 3)>
array([[0, 1, 2],
[3, 4, 5]])
Coordinates:
x (new_dim) <U1 'a' 'b'
* y (y) int64 10 20 30
* new_dim (new_dim) int64 -90 -100
Of course, concat
also works on Dataset
objects:
In [9]: ds = da.to_dataset(name="foo")
In [10]: xr.concat([ds.sel(x="a"), ds.sel(x="b")], "x")
Out[10]:
<xarray.Dataset>
Dimensions: (x: 2, y: 3)
Coordinates:
* x (x) <U1 'a' 'b'
* y (y) int64 10 20 30
Data variables:
foo (x, y) int64 0 1 2 3 4 5
concat()
has a number of options which provide deeper control
over which variables are concatenated and how it handles conflicting variables
between datasets. With the default parameters, xarray will load some coordinate
variables into memory to compare them between datasets. This may be prohibitively
expensive if you are manipulating your dataset lazily using Parallel computing with Dask.
Merge#
To combine variables and coordinates between multiple DataArray
and/or
Dataset
objects, use merge()
. It can merge a list of
Dataset
, DataArray
or dictionaries of objects convertible to
DataArray
objects:
In [11]: xr.merge([ds, ds.rename({"foo": "bar"})])
Out[11]:
<xarray.Dataset>
Dimensions: (x: 2, y: 3)
Coordinates:
* x (x) <U1 'a' 'b'
* y (y) int64 10 20 30
Data variables:
foo (x, y) int64 0 1 2 3 4 5
bar (x, y) int64 0 1 2 3 4 5
In [12]: xr.merge([xr.DataArray(n, name="var%d" % n) for n in range(5)])
Out[12]:
<xarray.Dataset>
Dimensions: ()
Data variables:
var0 int64 0
var1 int64 1
var2 int64 2
var3 int64 3
var4 int64 4
If you merge another dataset (or a dictionary including data array objects), by default the resulting dataset will be aligned on the union of all index coordinates:
In [13]: other = xr.Dataset({"bar": ("x", [1, 2, 3, 4]), "x": list("abcd")})
In [14]: xr.merge([ds, other])
Out[14]:
<xarray.Dataset>
Dimensions: (x: 4, y: 3)
Coordinates:
* x (x) <U1 'a' 'b' 'c' 'd'
* y (y) int64 10 20 30
Data variables:
foo (x, y) float64 0.0 1.0 2.0 3.0 4.0 5.0 nan nan nan nan nan nan
bar (x) int64 1 2 3 4
This ensures that merge
is non-destructive. xarray.MergeError
is raised
if you attempt to merge two variables with the same name but different values:
In [15]: xr.merge([ds, ds + 1])
MergeError: conflicting values for variable 'foo' on objects to be combined:
first value: <xarray.Variable (x: 2, y: 3)>
array([[ 0.4691123 , -0.28286334, -1.5090585 ],
[-1.13563237, 1.21211203, -0.17321465]])
second value: <xarray.Variable (x: 2, y: 3)>
array([[ 1.4691123 , 0.71713666, -0.5090585 ],
[-0.13563237, 2.21211203, 0.82678535]])
The same non-destructive merging between DataArray
index coordinates is
used in the Dataset
constructor:
In [16]: xr.Dataset({"a": da.isel(x=slice(0, 1)), "b": da.isel(x=slice(1, 2))})
Out[16]:
<xarray.Dataset>
Dimensions: (x: 2, y: 3)
Coordinates:
* x (x) <U1 'a' 'b'
* y (y) int64 10 20 30
Data variables:
a (x, y) float64 0.0 1.0 2.0 nan nan nan
b (x, y) float64 nan nan nan 3.0 4.0 5.0
Combine#
The instance method combine_first()
combines two
datasets/data arrays and defaults to non-null values in the calling object,
using values from the called object to fill holes. The resulting coordinates
are the union of coordinate labels. Vacant cells as a result of the outer-join
are filled with NaN
. For example:
In [17]: ar0 = xr.DataArray([[0, 0], [0, 0]], [("x", ["a", "b"]), ("y", [-1, 0])])
In [18]: ar1 = xr.DataArray([[1, 1], [1, 1]], [("x", ["b", "c"]), ("y", [0, 1])])
In [19]: ar0.combine_first(ar1)
Out[19]:
<xarray.DataArray (x: 3, y: 3)>
array([[ 0., 0., nan],
[ 0., 0., 1.],
[nan, 1., 1.]])
Coordinates:
* x (x) <U1 'a' 'b' 'c'
* y (y) int64 -1 0 1
In [20]: ar1.combine_first(ar0)
Out[20]:
<xarray.DataArray (x: 3, y: 3)>
array([[ 0., 0., nan],
[ 0., 1., 1.],
[nan, 1., 1.]])
Coordinates:
* x (x) <U1 'a' 'b' 'c'
* y (y) int64 -1 0 1
For datasets, ds0.combine_first(ds1)
works similarly to
xr.merge([ds0, ds1])
, except that xr.merge
raises MergeError
when
there are conflicting values in variables to be merged, whereas
.combine_first
defaults to the calling object’s values.
Update#
In contrast to merge
, update()
modifies a dataset
in-place without checking for conflicts, and will overwrite any existing
variables with new values:
In [21]: ds.update({"space": ("space", [10.2, 9.4, 3.9])})
Out[21]:
<xarray.Dataset>
Dimensions: (x: 2, y: 3, space: 3)
Coordinates:
* x (x) <U1 'a' 'b'
* y (y) int64 10 20 30
* space (space) float64 10.2 9.4 3.9
Data variables:
foo (x, y) int64 0 1 2 3 4 5
However, dimensions are still required to be consistent between different Dataset variables, so you cannot change the size of a dimension unless you replace all dataset variables that use it.
update
also performs automatic alignment if necessary. Unlike merge
, it
maintains the alignment of the original array instead of merging indexes:
In [22]: ds.update(other)
Out[22]:
<xarray.Dataset>
Dimensions: (x: 2, y: 3, space: 3)
Coordinates:
* x (x) <U1 'a' 'b'
* y (y) int64 10 20 30
* space (space) float64 10.2 9.4 3.9
Data variables:
foo (x, y) int64 0 1 2 3 4 5
bar (x) int64 1 2
The exact same alignment logic when setting a variable with __setitem__
syntax:
In [23]: ds["baz"] = xr.DataArray([9, 9, 9, 9, 9], coords=[("x", list("abcde"))])
In [24]: ds.baz
Out[24]:
<xarray.DataArray 'baz' (x: 2)>
array([9, 9])
Coordinates:
* x (x) <U1 'a' 'b'
Equals and identical#
Xarray objects can be compared by using the equals()
,
identical()
and
broadcast_equals()
methods. These methods are used by
the optional compat
argument on concat
and merge
.
equals
checks dimension names, indexes and array
values:
In [25]: da.equals(da.copy())
Out[25]: True
identical
also checks attributes, and the name of each
object:
In [26]: da.identical(da.rename("bar"))
Out[26]: False
broadcast_equals
does a more relaxed form of equality
check that allows variables to have different dimensions, as long as values
are constant along those new dimensions:
In [27]: left = xr.Dataset(coords={"x": 0})
In [28]: right = xr.Dataset({"x": [0, 0, 0]})
In [29]: left.broadcast_equals(right)
Out[29]: True
Like pandas objects, two xarray objects are still equal or identical if they have
missing values marked by NaN
in the same locations.
In contrast, the ==
operation performs element-wise comparison (like
numpy):
In [30]: da == da.copy()
Out[30]:
<xarray.DataArray (x: 2, y: 3)>
array([[ True, True, True],
[ True, True, True]])
Coordinates:
* x (x) <U1 'a' 'b'
* y (y) int64 10 20 30
Note that NaN
does not compare equal to NaN
in element-wise comparison;
you may need to deal with missing values explicitly.
Merging with ‘no_conflicts’#
The compat
argument 'no_conflicts'
is only available when
combining xarray objects with merge
. In addition to the above comparison
methods it allows the merging of xarray objects with locations where either
have NaN
values. This can be used to combine data with overlapping
coordinates as long as any non-missing values agree or are disjoint:
In [31]: ds1 = xr.Dataset({"a": ("x", [10, 20, 30, np.nan])}, {"x": [1, 2, 3, 4]})
In [32]: ds2 = xr.Dataset({"a": ("x", [np.nan, 30, 40, 50])}, {"x": [2, 3, 4, 5]})
In [33]: xr.merge([ds1, ds2], compat="no_conflicts")
Out[33]:
<xarray.Dataset>
Dimensions: (x: 5)
Coordinates:
* x (x) int64 1 2 3 4 5
Data variables:
a (x) float64 10.0 20.0 30.0 40.0 50.0
Note that due to the underlying representation of missing values as floating
point numbers (NaN
), variable data type is not always preserved when merging
in this manner.
Combining along multiple dimensions#
For combining many objects along multiple dimensions xarray provides
combine_nested()
and combine_by_coords()
. These
functions use a combination of concat
and merge
across different
variables to combine many objects into one.
combine_nested()
requires specifying the order in which the
objects should be combined, while combine_by_coords()
attempts to
infer this ordering automatically from the coordinates in the data.
combine_nested()
is useful when you know the spatial
relationship between each object in advance. The datasets must be provided in
the form of a nested list, which specifies their relative position and
ordering. A common task is collecting data from a parallelized simulation where
each processor wrote out data to a separate file. A domain which was decomposed
into 4 parts, 2 each along both the x and y axes, requires organising the
datasets into a doubly-nested list, e.g:
In [34]: arr = xr.DataArray(
....: name="temperature", data=np.random.randint(5, size=(2, 2)), dims=["x", "y"]
....: )
....:
In [35]: arr
Out[35]:
<xarray.DataArray 'temperature' (x: 2, y: 2)>
array([[1, 2],
[2, 1]])
Dimensions without coordinates: x, y
In [36]: ds_grid = [[arr, arr], [arr, arr]]
In [37]: xr.combine_nested(ds_grid, concat_dim=["x", "y"])
Out[37]:
<xarray.DataArray 'temperature' (x: 4, y: 4)>
array([[1, 2, 1, 2],
[2, 1, 2, 1],
[1, 2, 1, 2],
[2, 1, 2, 1]])
Dimensions without coordinates: x, y
combine_nested()
can also be used to explicitly merge datasets
with different variables. For example if we have 4 datasets, which are divided
along two times, and contain two different variables, we can pass None
to 'concat_dim'
to specify the dimension of the nested list over which
we wish to use merge
instead of concat
:
In [38]: temp = xr.DataArray(name="temperature", data=np.random.randn(2), dims=["t"])
In [39]: precip = xr.DataArray(name="precipitation", data=np.random.randn(2), dims=["t"])
In [40]: ds_grid = [[temp, precip], [temp, precip]]
In [41]: xr.combine_nested(ds_grid, concat_dim=["t", None])
Out[41]:
<xarray.Dataset>
Dimensions: (t: 4)
Dimensions without coordinates: t
Data variables:
temperature (t) float64 0.4691 -0.2829 0.4691 -0.2829
precipitation (t) float64 -1.509 -1.136 -1.509 -1.136
combine_by_coords()
is for combining objects which have dimension
coordinates which specify their relationship to and order relative to one
another, for example a linearly-increasing ‘time’ dimension coordinate.
Here we combine two datasets using their common dimension coordinates. Notice
they are concatenated in order based on the values in their dimension
coordinates, not on their position in the list passed to combine_by_coords
.
In [42]: x1 = xr.DataArray(name="foo", data=np.random.randn(3), coords=[("x", [0, 1, 2])])
In [43]: x2 = xr.DataArray(name="foo", data=np.random.randn(3), coords=[("x", [3, 4, 5])])
In [44]: xr.combine_by_coords([x2, x1])
Out[44]:
<xarray.Dataset>
Dimensions: (x: 6)
Coordinates:
* x (x) int64 0 1 2 3 4 5
Data variables:
foo (x) float64 1.212 -0.1732 0.1192 -1.044 -0.8618 -2.105
These functions can be used by open_mfdataset()
to open many
files as one dataset. The particular function used is specified by setting the
argument 'combine'
to 'by_coords'
or 'nested'
. This is useful for
situations where your data is split across many files in multiple locations,
which have some known relationship between one another.