xarray.DataArray.interp_like#
- DataArray.interp_like(other, method='linear', assume_sorted=False, kwargs=None)[source]#
Interpolate this object onto the coordinates of another object, filling out of range values with NaN.
If interpolating along a single existing dimension,
scipy.interpolate.interp1d
is called. When interpolating along multiple existing dimensions, an attempt is made to decompose the interpolation into multiple 1-dimensional interpolations. If this is possible,scipy.interpolate.interp1d
is called. Otherwise,scipy.interpolate.interpn()
is called.- Parameters:
other (
Dataset
orDataArray
) – Object with an ‘indexes’ attribute giving a mapping from dimension names to an 1d array-like, which provides coordinates upon which to index the variables in this dataset. Missing values are skipped.method (
{"linear", "nearest", "zero", "slinear", "quadratic", "cubic", "polynomial"}
, default:"linear"
) – The method used to interpolate. The method should be supported by the scipy interpolator:{“linear”, “nearest”, “zero”, “slinear”, “quadratic”, “cubic”, “polynomial”} when
interp1d
is called.{“linear”, “nearest”} when
interpn
is called.
If
"polynomial"
is passed, theorder
keyword argument must also be provided.assume_sorted (
bool
, default:False
) – If False, values of coordinates that are interpolated over can be in any order and they are sorted first. If True, interpolated coordinates are assumed to be an array of monotonically increasing values.kwargs (
dict
, optional) – Additional keyword passed to scipy’s interpolator.
- Returns:
interpolated (
DataArray
) – Another dataarray by interpolating this dataarray’s data along the coordinates of the other object.
Examples
>>> data = np.arange(12).reshape(4, 3) >>> da1 = xr.DataArray( ... data=data, ... dims=["x", "y"], ... coords={"x": [10, 20, 30, 40], "y": [70, 80, 90]}, ... ) >>> da1 <xarray.DataArray (x: 4, y: 3)> array([[ 0, 1, 2], [ 3, 4, 5], [ 6, 7, 8], [ 9, 10, 11]]) Coordinates: * x (x) int64 10 20 30 40 * y (y) int64 70 80 90 >>> da2 = xr.DataArray( ... data=data, ... dims=["x", "y"], ... coords={"x": [10, 20, 29, 39], "y": [70, 80, 90]}, ... ) >>> da2 <xarray.DataArray (x: 4, y: 3)> array([[ 0, 1, 2], [ 3, 4, 5], [ 6, 7, 8], [ 9, 10, 11]]) Coordinates: * x (x) int64 10 20 29 39 * y (y) int64 70 80 90
Interpolate the values in the coordinates of the other DataArray with respect to the source’s values:
>>> da2.interp_like(da1) <xarray.DataArray (x: 4, y: 3)> array([[0. , 1. , 2. ], [3. , 4. , 5. ], [6.3, 7.3, 8.3], [nan, nan, nan]]) Coordinates: * x (x) int64 10 20 30 40 * y (y) int64 70 80 90
Could also extrapolate missing values:
>>> da2.interp_like(da1, kwargs={"fill_value": "extrapolate"}) <xarray.DataArray (x: 4, y: 3)> array([[ 0. , 1. , 2. ], [ 3. , 4. , 5. ], [ 6.3, 7.3, 8.3], [ 9.3, 10.3, 11.3]]) Coordinates: * x (x) int64 10 20 30 40 * y (y) int64 70 80 90
Notes
scipy is required. If the dataarray has object-type coordinates, reindex is used for these coordinates instead of the interpolation.
See also