xarray.Dataset.quantile#
- Dataset.quantile(q, dim=None, method='linear', numeric_only=False, keep_attrs=None, skipna=None, interpolation=None)[source]#
Compute the qth quantile of the data along the specified dimension.
Returns the qth quantiles(s) of the array elements for each variable in the Dataset.
- Parameters:
q (
float
or array-like offloat
) – Quantile to compute, which must be between 0 and 1 inclusive.dim (
str
orIterable
ofHashable
, optional) – Dimension(s) over which to apply quantile.method (
str
, default:"linear"
) – This optional parameter specifies the interpolation method to use when the desired quantile lies between two data points. The options sorted by their R type as summarized in the H&F paper [1] are:“inverted_cdf” (*)
“averaged_inverted_cdf” (*)
“closest_observation” (*)
“interpolated_inverted_cdf” (*)
“hazen” (*)
“weibull” (*)
“linear” (default)
“median_unbiased” (*)
“normal_unbiased” (*)
The first three methods are discontiuous. The following discontinuous variations of the default “linear” (7.) option are also available:
“lower”
“higher”
“midpoint”
“nearest”
See
numpy.quantile()
or [1] for details. The “method” argument was previously called “interpolation”, renamed in accordance with numpy version 1.22.0.(*) These methods require numpy version 1.22 or newer.
keep_attrs (
bool
, optional) – If True, the dataset’s attributes (attrs) will be copied from the original object to the new one. If False (default), the new object will be returned without attributes.numeric_only (
bool
, optional) – If True, only applyfunc
to variables with a numeric dtype.skipna (
bool
, optional) – If True, skip missing values (as marked by NaN). By default, only skips missing values for float dtypes; other dtypes either do not have a sentinel missing value (int) or skipna=True has not been implemented (object, datetime64 or timedelta64).
- Returns:
quantiles (
Dataset
) – If q is a single quantile, then the result is a scalar for each variable in data_vars. If multiple percentiles are given, first axis of the result corresponds to the quantile and a quantile dimension is added to the return Dataset. The other dimensions are the dimensions that remain after the reduction of the array.
Examples
>>> ds = xr.Dataset( ... {"a": (("x", "y"), [[0.7, 4.2, 9.4, 1.5], [6.5, 7.3, 2.6, 1.9]])}, ... coords={"x": [7, 9], "y": [1, 1.5, 2, 2.5]}, ... ) >>> ds.quantile(0) # or ds.quantile(0, dim=...) <xarray.Dataset> Dimensions: () Coordinates: quantile float64 0.0 Data variables: a float64 0.7 >>> ds.quantile(0, dim="x") <xarray.Dataset> Dimensions: (y: 4) Coordinates: * y (y) float64 1.0 1.5 2.0 2.5 quantile float64 0.0 Data variables: a (y) float64 0.7 4.2 2.6 1.5 >>> ds.quantile([0, 0.5, 1]) <xarray.Dataset> Dimensions: (quantile: 3) Coordinates: * quantile (quantile) float64 0.0 0.5 1.0 Data variables: a (quantile) float64 0.7 3.4 9.4 >>> ds.quantile([0, 0.5, 1], dim="x") <xarray.Dataset> Dimensions: (quantile: 3, y: 4) Coordinates: * y (y) float64 1.0 1.5 2.0 2.5 * quantile (quantile) float64 0.0 0.5 1.0 Data variables: a (quantile, y) float64 0.7 4.2 2.6 1.5 3.6 ... 1.7 6.5 7.3 9.4 1.9
References