xarray.DataArray.stack#
- DataArray.stack(dimensions=None, create_index=True, index_cls=<class 'xarray.core.indexes.PandasMultiIndex'>, **dimensions_kwargs)[source]#
Stack any number of existing dimensions into a single new dimension.
New dimensions will be added at the end, and the corresponding coordinate variables will be combined into a MultiIndex.
- Parameters:
dimensions (mapping of
Hashable
to sequence ofHashable
) – Mapping of the form new_name=(dim1, dim2, …). Names of new dimensions, and the existing dimensions that they replace. An ellipsis (…) will be replaced by all unlisted dimensions. Passing a list containing an ellipsis (stacked_dim=[…]) will stack over all dimensions.create_index (
bool
orNone
, default:True
) – If True, create a multi-index for each of the stacked dimensions. If False, don’t create any index. If None, create a multi-index only if exactly one single (1-d) coordinate index is found for every dimension to stack.index_cls (
class
, optional) – Can be used to pass a custom multi-index type. Must be an Xarray index that implements .stack(). By default, a pandas multi-index wrapper is used.**dimensions_kwargs – The keyword arguments form of
dimensions
. One of dimensions or dimensions_kwargs must be provided.
- Returns:
stacked (
DataArray
) – DataArray with stacked data.
Examples
>>> arr = xr.DataArray( ... np.arange(6).reshape(2, 3), ... coords=[("x", ["a", "b"]), ("y", [0, 1, 2])], ... ) >>> arr <xarray.DataArray (x: 2, y: 3)> array([[0, 1, 2], [3, 4, 5]]) Coordinates: * x (x) <U1 'a' 'b' * y (y) int64 0 1 2 >>> stacked = arr.stack(z=("x", "y")) >>> stacked.indexes["z"] MultiIndex([('a', 0), ('a', 1), ('a', 2), ('b', 0), ('b', 1), ('b', 2)], name='z')
See also