xarray.DataArray.interp#
- DataArray.interp(coords=None, method='linear', assume_sorted=False, kwargs=None, **coords_kwargs)[source]#
Interpolate a DataArray onto new coordinates
Performs univariate or multivariate interpolation of a DataArray onto new coordinates using scipy’s interpolation routines. If interpolating along an existing dimension,
scipy.interpolate.interp1d
is called. When interpolating along multiple existing dimensions, an attempt is made to decompose the interpolation into multiple 1-dimensional interpolations. If this is possible,scipy.interpolate.interp1d
is called. Otherwise,scipy.interpolate.interpn()
is called.- Parameters:
coords (
dict
, optional) – Mapping from dimension names to the new coordinates. New coordinate can be a scalar, array-like or DataArray. If DataArrays are passed as new coordinates, their dimensions are used for the broadcasting. Missing values are skipped.method (
{"linear", "nearest", "zero", "slinear", "quadratic", "cubic", "polynomial"}
, default:"linear"
) – The method used to interpolate. The method should be supported by the scipy interpolator:interp1d
: {“linear”, “nearest”, “zero”, “slinear”, “quadratic”, “cubic”, “polynomial”}interpn
: {“linear”, “nearest”}
If
"polynomial"
is passed, theorder
keyword argument must also be provided.assume_sorted (
bool
, default:False
) – If False, values of x can be in any order and they are sorted first. If True, x has to be an array of monotonically increasing values.kwargs (dict-like or
None
, default:None
) – Additional keyword arguments passed to scipy’s interpolator. Valid options and their behavior depend whetherinterp1d
orinterpn
is used.**coords_kwargs (
{dim: coordinate, ...}
, optional) – The keyword arguments form ofcoords
. One of coords or coords_kwargs must be provided.
- Returns:
interpolated (
DataArray
) – New dataarray on the new coordinates.
Notes
scipy is required.
Examples
>>> da = xr.DataArray( ... data=[[1, 4, 2, 9], [2, 7, 6, np.nan], [6, np.nan, 5, 8]], ... dims=("x", "y"), ... coords={"x": [0, 1, 2], "y": [10, 12, 14, 16]}, ... ) >>> da <xarray.DataArray (x: 3, y: 4)> array([[ 1., 4., 2., 9.], [ 2., 7., 6., nan], [ 6., nan, 5., 8.]]) Coordinates: * x (x) int64 0 1 2 * y (y) int64 10 12 14 16
1D linear interpolation (the default):
>>> da.interp(x=[0, 0.75, 1.25, 1.75]) <xarray.DataArray (x: 4, y: 4)> array([[1. , 4. , 2. , nan], [1.75, 6.25, 5. , nan], [3. , nan, 5.75, nan], [5. , nan, 5.25, nan]]) Coordinates: * y (y) int64 10 12 14 16 * x (x) float64 0.0 0.75 1.25 1.75
1D nearest interpolation:
>>> da.interp(x=[0, 0.75, 1.25, 1.75], method="nearest") <xarray.DataArray (x: 4, y: 4)> array([[ 1., 4., 2., 9.], [ 2., 7., 6., nan], [ 2., 7., 6., nan], [ 6., nan, 5., 8.]]) Coordinates: * y (y) int64 10 12 14 16 * x (x) float64 0.0 0.75 1.25 1.75
1D linear extrapolation:
>>> da.interp( ... x=[1, 1.5, 2.5, 3.5], ... method="linear", ... kwargs={"fill_value": "extrapolate"}, ... ) <xarray.DataArray (x: 4, y: 4)> array([[ 2. , 7. , 6. , nan], [ 4. , nan, 5.5, nan], [ 8. , nan, 4.5, nan], [12. , nan, 3.5, nan]]) Coordinates: * y (y) int64 10 12 14 16 * x (x) float64 1.0 1.5 2.5 3.5
2D linear interpolation:
>>> da.interp(x=[0, 0.75, 1.25, 1.75], y=[11, 13, 15], method="linear") <xarray.DataArray (x: 4, y: 3)> array([[2.5 , 3. , nan], [4. , 5.625, nan], [ nan, nan, nan], [ nan, nan, nan]]) Coordinates: * x (x) float64 0.0 0.75 1.25 1.75 * y (y) int64 11 13 15