You can run this notebook in a live session or view it on Github.
Toy weather data#
Here is an example of how to easily manipulate a toy weather dataset using xarray and other recommended Python libraries:
[1]:
import numpy as np
import pandas as pd
import seaborn as sns
import xarray as xr
np.random.seed(123)
xr.set_options(display_style="html")
times = pd.date_range("2000-01-01", "2001-12-31", name="time")
annual_cycle = np.sin(2 * np.pi * (times.dayofyear.values / 365.25 - 0.28))
base = 10 + 15 * annual_cycle.reshape(-1, 1)
tmin_values = base + 3 * np.random.randn(annual_cycle.size, 3)
tmax_values = base + 10 + 3 * np.random.randn(annual_cycle.size, 3)
ds = xr.Dataset(
{
"tmin": (("time", "location"), tmin_values),
"tmax": (("time", "location"), tmax_values),
},
{"time": times, "location": ["IA", "IN", "IL"]},
)
ds
[1]:
<xarray.Dataset> Dimensions: (time: 731, location: 3) Coordinates: * time (time) datetime64[ns] 2000-01-01 2000-01-02 ... 2001-12-31 * location (location) <U2 'IA' 'IN' 'IL' Data variables: tmin (time, location) float64 -8.037 -1.788 -3.932 ... -1.346 -4.544 tmax (time, location) float64 12.98 3.31 6.779 ... 6.636 3.343 3.805
Examine a dataset with pandas and seaborn#
Convert to a pandas DataFrame#
[2]:
df = ds.to_dataframe()
df.head()
[2]:
tmin | tmax | ||
---|---|---|---|
time | location | ||
2000-01-01 | IA | -8.037369 | 12.980549 |
IN | -1.788441 | 3.310409 | |
IL | -3.931542 | 6.778554 | |
2000-01-02 | IA | -9.341157 | 0.447856 |
IN | -6.558073 | 6.372712 |
[3]:
df.describe()
[3]:
tmin | tmax | |
---|---|---|
count | 2193.000000 | 2193.000000 |
mean | 9.975426 | 20.108232 |
std | 10.963228 | 11.010569 |
min | -13.395763 | -3.506234 |
25% | -0.040347 | 9.853905 |
50% | 10.060403 | 19.967409 |
75% | 20.083590 | 30.045588 |
max | 33.456060 | 43.271148 |
Visualize using pandas#
[4]:
ds.mean(dim="location").to_dataframe().plot()
[4]:
<Axes: xlabel='time'>
Visualize using seaborn#
[5]:
sns.pairplot(df.reset_index(), vars=ds.data_vars)
[5]:
<seaborn.axisgrid.PairGrid at 0x7f2242c0b970>
Probability of freeze by calendar month#
[6]:
freeze = (ds["tmin"] <= 0).groupby("time.month").mean("time")
freeze
[6]:
<xarray.DataArray 'tmin' (month: 12, location: 3)> array([[0.9516129 , 0.88709677, 0.93548387], [0.84210526, 0.71929825, 0.77192982], [0.24193548, 0.12903226, 0.16129032], [0. , 0. , 0. ], [0. , 0. , 0. ], [0. , 0. , 0. ], [0. , 0. , 0. ], [0. , 0. , 0. ], [0. , 0. , 0. ], [0. , 0.01612903, 0. ], [0.33333333, 0.35 , 0.23333333], [0.93548387, 0.85483871, 0.82258065]]) Coordinates: * location (location) <U2 'IA' 'IN' 'IL' * month (month) int64 1 2 3 4 5 6 7 8 9 10 11 12
[7]:
freeze.to_pandas().plot()
[7]:
<Axes: xlabel='month'>
Monthly averaging#
[8]:
monthly_avg = ds.resample(time="1MS").mean()
monthly_avg.sel(location="IA").to_dataframe().plot(style="s-")
[8]:
<Axes: xlabel='time'>
Note that MS
here refers to Month-Start; M
labels Month-End (the last day of the month).
Calculate monthly anomalies#
In climatology, “anomalies” refer to the difference between observations and typical weather for a particular season. Unlike observations, anomalies should not show any seasonal cycle.
[9]:
climatology = ds.groupby("time.month").mean("time")
anomalies = ds.groupby("time.month") - climatology
anomalies.mean("location").to_dataframe()[["tmin", "tmax"]].plot()
[9]:
<Axes: xlabel='time'>
Calculate standardized monthly anomalies#
You can create standardized anomalies where the difference between the observations and the climatological monthly mean is divided by the climatological standard deviation.
[10]:
climatology_mean = ds.groupby("time.month").mean("time")
climatology_std = ds.groupby("time.month").std("time")
stand_anomalies = xr.apply_ufunc(
lambda x, m, s: (x - m) / s,
ds.groupby("time.month"),
climatology_mean,
climatology_std,
)
stand_anomalies.mean("location").to_dataframe()[["tmin", "tmax"]].plot()
[10]:
<Axes: xlabel='time'>
Fill missing values with climatology#
The fillna
method on grouped objects lets you easily fill missing values by group:
[11]:
# throw away the first half of every month
some_missing = ds.tmin.sel(time=ds["time.day"] > 15).reindex_like(ds)
filled = some_missing.groupby("time.month").fillna(climatology.tmin)
both = xr.Dataset({"some_missing": some_missing, "filled": filled})
both
[11]:
<xarray.Dataset> Dimensions: (time: 731, location: 3) Coordinates: * time (time) datetime64[ns] 2000-01-01 2000-01-02 ... 2001-12-31 * location (location) <U2 'IA' 'IN' 'IL' month (time) int64 1 1 1 1 1 1 1 1 1 ... 12 12 12 12 12 12 12 12 12 Data variables: some_missing (time, location) float64 nan nan nan ... 2.063 -1.346 -4.544 filled (time, location) float64 -5.163 -4.216 ... -1.346 -4.544
[12]:
df = both.sel(time="2000").mean("location").reset_coords(drop=True).to_dataframe()
df.head()
[12]:
some_missing | filled | |
---|---|---|
time | ||
2000-01-01 | NaN | -4.686763 |
2000-01-02 | NaN | -4.686763 |
2000-01-03 | NaN | -4.686763 |
2000-01-04 | NaN | -4.686763 |
2000-01-05 | NaN | -4.686763 |
[13]:
df[["filled", "some_missing"]].plot()
[13]:
<Axes: xlabel='time'>