🍾 Xarray is now 10 years old! 🎉

You can run this notebook in a live session Binder or view it on Github.

Toy weather data#

Here is an example of how to easily manipulate a toy weather dataset using xarray and other recommended Python libraries:

[1]:
import numpy as np
import pandas as pd
import seaborn as sns

import xarray as xr

np.random.seed(123)

xr.set_options(display_style="html")

times = pd.date_range("2000-01-01", "2001-12-31", name="time")
annual_cycle = np.sin(2 * np.pi * (times.dayofyear.values / 365.25 - 0.28))

base = 10 + 15 * annual_cycle.reshape(-1, 1)
tmin_values = base + 3 * np.random.randn(annual_cycle.size, 3)
tmax_values = base + 10 + 3 * np.random.randn(annual_cycle.size, 3)

ds = xr.Dataset(
    {
        "tmin": (("time", "location"), tmin_values),
        "tmax": (("time", "location"), tmax_values),
    },
    {"time": times, "location": ["IA", "IN", "IL"]},
)

ds
[1]:
<xarray.Dataset> Size: 41kB
Dimensions:   (time: 731, location: 3)
Coordinates:
  * time      (time) datetime64[ns] 6kB 2000-01-01 2000-01-02 ... 2001-12-31
  * location  (location) <U2 24B 'IA' 'IN' 'IL'
Data variables:
    tmin      (time, location) float64 18kB -8.037 -1.788 ... -1.346 -4.544
    tmax      (time, location) float64 18kB 12.98 3.31 6.779 ... 3.343 3.805

Examine a dataset with pandas and seaborn#

Convert to a pandas DataFrame#

[2]:
df = ds.to_dataframe()
df.head()
[2]:
tmin tmax
time location
2000-01-01 IA -8.037369 12.980549
IN -1.788441 3.310409
IL -3.931542 6.778554
2000-01-02 IA -9.341157 0.447856
IN -6.558073 6.372712
[3]:
df.describe()
[3]:
tmin tmax
count 2193.000000 2193.000000
mean 9.975426 20.108232
std 10.963228 11.010569
min -13.395763 -3.506234
25% -0.040347 9.853905
50% 10.060403 19.967409
75% 20.083590 30.045588
max 33.456060 43.271148

Visualize using pandas#

[4]:
ds.mean(dim="location").to_dataframe().plot()
[4]:
<Axes: xlabel='time'>
../_images/examples_weather-data_7_1.png

Visualize using seaborn#

[5]:
sns.pairplot(df.reset_index(), vars=ds.data_vars)
[5]:
<seaborn.axisgrid.PairGrid at 0x7fc7734b3310>
../_images/examples_weather-data_9_1.png

Probability of freeze by calendar month#

[6]:
freeze = (ds["tmin"] <= 0).groupby("time.month").mean("time")
freeze
[6]:
<xarray.DataArray 'tmin' (month: 12, location: 3)> Size: 288B
array([[0.9516129 , 0.88709677, 0.93548387],
       [0.84210526, 0.71929825, 0.77192982],
       [0.24193548, 0.12903226, 0.16129032],
       [0.        , 0.        , 0.        ],
       [0.        , 0.        , 0.        ],
       [0.        , 0.        , 0.        ],
       [0.        , 0.        , 0.        ],
       [0.        , 0.        , 0.        ],
       [0.        , 0.        , 0.        ],
       [0.        , 0.01612903, 0.        ],
       [0.33333333, 0.35      , 0.23333333],
       [0.93548387, 0.85483871, 0.82258065]])
Coordinates:
  * location  (location) <U2 24B 'IA' 'IN' 'IL'
  * month     (month) int64 96B 1 2 3 4 5 6 7 8 9 10 11 12
[7]:
freeze.to_pandas().plot()
[7]:
<Axes: xlabel='month'>
../_images/examples_weather-data_12_1.png

Monthly averaging#

[8]:
monthly_avg = ds.resample(time="1MS").mean()
monthly_avg.sel(location="IA").to_dataframe().plot(style="s-")
[8]:
<Axes: xlabel='time'>
../_images/examples_weather-data_14_1.png

Note that MS here refers to Month-Start; M labels Month-End (the last day of the month).

Calculate monthly anomalies#

In climatology, “anomalies” refer to the difference between observations and typical weather for a particular season. Unlike observations, anomalies should not show any seasonal cycle.

[9]:
climatology = ds.groupby("time.month").mean("time")
anomalies = ds.groupby("time.month") - climatology
anomalies.mean("location").to_dataframe()[["tmin", "tmax"]].plot()
[9]:
<Axes: xlabel='time'>
../_images/examples_weather-data_18_1.png

Calculate standardized monthly anomalies#

You can create standardized anomalies where the difference between the observations and the climatological monthly mean is divided by the climatological standard deviation.

[10]:
climatology_mean = ds.groupby("time.month").mean("time")
climatology_std = ds.groupby("time.month").std("time")
stand_anomalies = xr.apply_ufunc(
    lambda x, m, s: (x - m) / s,
    ds.groupby("time.month"),
    climatology_mean,
    climatology_std,
)

stand_anomalies.mean("location").to_dataframe()[["tmin", "tmax"]].plot()
[10]:
<Axes: xlabel='time'>
../_images/examples_weather-data_21_1.png

Fill missing values with climatology#

The fillna method on grouped objects lets you easily fill missing values by group:

[11]:
# throw away the first half of every month
some_missing = ds.tmin.sel(time=ds["time.day"] > 15).reindex_like(ds)
filled = some_missing.groupby("time.month").fillna(climatology.tmin)
both = xr.Dataset({"some_missing": some_missing, "filled": filled})
both
[11]:
<xarray.Dataset> Size: 47kB
Dimensions:       (time: 731, location: 3)
Coordinates:
  * time          (time) datetime64[ns] 6kB 2000-01-01 2000-01-02 ... 2001-12-31
  * location      (location) <U2 24B 'IA' 'IN' 'IL'
    month         (time) int64 6kB 1 1 1 1 1 1 1 1 1 ... 12 12 12 12 12 12 12 12
Data variables:
    some_missing  (time, location) float64 18kB nan nan nan ... -1.346 -4.544
    filled        (time, location) float64 18kB -5.163 -4.216 ... -1.346 -4.544
[12]:
df = both.sel(time="2000").mean("location").reset_coords(drop=True).to_dataframe()
df.head()
[12]:
some_missing filled
time
2000-01-01 NaN -4.686763
2000-01-02 NaN -4.686763
2000-01-03 NaN -4.686763
2000-01-04 NaN -4.686763
2000-01-05 NaN -4.686763
[13]:
df[["filled", "some_missing"]].plot()
[13]:
<Axes: xlabel='time'>
../_images/examples_weather-data_26_1.png