You can run this notebook in a live session Binder or view it on Github.

ROMS Ocean Model Example

The Regional Ocean Modeling System (ROMS) is an open source hydrodynamic model that is used for simulating currents and water properties in coastal and estuarine regions. ROMS is one of a few standard ocean models, and it has an active user community.

ROMS uses a regular C-Grid in the horizontal, similar to other structured grid ocean and atmospheric models, and a stretched vertical coordinate (see the ROMS documentation for more details). Both of these require special treatment when using xarray to analyze ROMS ocean model output. This example notebook shows how to create a lazily evaluated vertical coordinate, and make some basic plots. The xgcm package is required to do analysis that is aware of the horizontal C-Grid.

[1]:
import numpy as np
import cartopy.crs as ccrs
import cartopy.feature as cfeature
import matplotlib.pyplot as plt
%matplotlib inline

import xarray as xr

Load a sample ROMS file. This is a subset of a full model available at

http://barataria.tamu.edu/thredds/catalog.html?dataset=txla_hindcast_agg

The subsetting was done using the following command on one of the output files:

#open dataset
ds = xr.open_dataset('/d2/shared/TXLA_ROMS/output_20yr_obc/2001/ocean_his_0015.nc')

# Turn on chunking to activate dask and parallelize read/write.
ds = ds.chunk({'ocean_time': 1})

# Pick out some of the variables that will be included as coordinates
ds = ds.set_coords(['Cs_r', 'Cs_w', 'hc', 'h', 'Vtransform'])

# Select a a subset of variables. Salt will be visualized, zeta is used to
# calculate the vertical coordinate
variables = ['salt', 'zeta']
ds[variables].isel(ocean_time=slice(47, None, 7*24),
                   xi_rho=slice(300, None)).to_netcdf('ROMS_example.nc', mode='w')

So, the ROMS_example.nc file contains a subset of the grid, one 3D variable, and two time steps.

Load in ROMS dataset as an xarray object

[2]:
# load in the file
ds = xr.tutorial.open_dataset('ROMS_example.nc', chunks={'ocean_time': 1})

# This is a way to turn on chunking and lazy evaluation. Opening with mfdataset, or
# setting the chunking in the open_dataset would also achive this.
ds
[2]:
Show/Hide data repr Show/Hide attributes
xarray.Dataset
    • eta_rho: 191
    • ocean_time: 2
    • s_rho: 30
    • xi_rho: 371
    • Cs_r
      (s_rho)
      float64
      dask.array<chunksize=(30,), meta=np.ndarray>
      long_name :
      S-coordinate stretching curves at RHO-points
      valid_min :
      -1.0
      valid_max :
      0.0
      field :
      Cs_r, scalar
      Array Chunk
      Bytes 240 B 240 B
      Shape (30,) (30,)
      Count 2 Tasks 1 Chunks
      Type float64 numpy.ndarray
      30 1
    • lon_rho
      (eta_rho, xi_rho)
      float64
      dask.array<chunksize=(191, 371), meta=np.ndarray>
      long_name :
      longitude of RHO-points
      units :
      degree_east
      standard_name :
      longitude
      field :
      lon_rho, scalar
      Array Chunk
      Bytes 566.89 kB 566.89 kB
      Shape (191, 371) (191, 371)
      Count 2 Tasks 1 Chunks
      Type float64 numpy.ndarray
      371 191
    • hc
      ()
      float64
      ...
      long_name :
      S-coordinate parameter, critical depth
      units :
      meter
      array(20.)
    • h
      (eta_rho, xi_rho)
      float64
      dask.array<chunksize=(191, 371), meta=np.ndarray>
      long_name :
      bathymetry at RHO-points
      units :
      meter
      field :
      bath, scalar
      Array Chunk
      Bytes 566.89 kB 566.89 kB
      Shape (191, 371) (191, 371)
      Count 2 Tasks 1 Chunks
      Type float64 numpy.ndarray
      371 191
    • lat_rho
      (eta_rho, xi_rho)
      float64
      dask.array<chunksize=(191, 371), meta=np.ndarray>
      long_name :
      latitude of RHO-points
      units :
      degree_north
      standard_name :
      latitude
      field :
      lat_rho, scalar
      Array Chunk
      Bytes 566.89 kB 566.89 kB
      Shape (191, 371) (191, 371)
      Count 2 Tasks 1 Chunks
      Type float64 numpy.ndarray
      371 191
    • Vtransform
      ()
      int32
      ...
      long_name :
      vertical terrain-following transformation equation
      array(2, dtype=int32)
    • ocean_time
      (ocean_time)
      datetime64[ns]
      2001-08-01 2001-08-08
      long_name :
      time since initialization
      field :
      time, scalar, series
      array(['2001-08-01T00:00:00.000000000', '2001-08-08T00:00:00.000000000'],
            dtype='datetime64[ns]')
    • s_rho
      (s_rho)
      float64
      -0.9833 -0.95 ... -0.05 -0.01667
      long_name :
      S-coordinate at RHO-points
      valid_min :
      -1.0
      valid_max :
      0.0
      positive :
      up
      standard_name :
      ocean_s_coordinate_g2
      formula_terms :
      s: s_rho C: Cs_r eta: zeta depth: h depth_c: hc
      field :
      s_rho, scalar
      array([-0.983333, -0.95    , -0.916667, -0.883333, -0.85    , -0.816667,
             -0.783333, -0.75    , -0.716667, -0.683333, -0.65    , -0.616667,
             -0.583333, -0.55    , -0.516667, -0.483333, -0.45    , -0.416667,
             -0.383333, -0.35    , -0.316667, -0.283333, -0.25    , -0.216667,
             -0.183333, -0.15    , -0.116667, -0.083333, -0.05    , -0.016667])
    • salt
      (ocean_time, s_rho, eta_rho, xi_rho)
      float32
      dask.array<chunksize=(1, 30, 191, 371), meta=np.ndarray>
      long_name :
      salinity
      time :
      ocean_time
      field :
      salinity, scalar, series
      Array Chunk
      Bytes 17.01 MB 8.50 MB
      Shape (2, 30, 191, 371) (1, 30, 191, 371)
      Count 3 Tasks 2 Chunks
      Type float32 numpy.ndarray
      2 1 371 191 30
    • zeta
      (ocean_time, eta_rho, xi_rho)
      float32
      dask.array<chunksize=(1, 191, 371), meta=np.ndarray>
      long_name :
      free-surface
      units :
      meter
      time :
      ocean_time
      field :
      free-surface, scalar, series
      Array Chunk
      Bytes 566.89 kB 283.44 kB
      Shape (2, 191, 371) (1, 191, 371)
      Count 3 Tasks 2 Chunks
      Type float32 numpy.ndarray
      371 191 2
  • file :
    ../output_20yr_obc/2001/ocean_his_0015.nc
    format :
    netCDF-4/HDF5 file
    Conventions :
    CF-1.4
    type :
    ROMS/TOMS history file
    title :
    TXLA ROMS hindcast run with dyes and oxygen
    rst_file :
    ../output_20yr_obc/2001/ocean_rst.nc
    his_base :
    ../output_20yr_obc/2001/ocean_his
    avg_base :
    ../output_20yr_obc/2001/ocean_avg
    dia_base :
    ../output_20yr_obc/2001/ocean_dia
    sta_file :
    ocean_sta.nc
    grd_file :
    ../inputs/grd/txla2_grd_v4_test_lcut_hglo_wtype.nc
    ini_file :
    ../output_20yr_obc/2000/ocean_rst.nc
    frc_file_01 :
    ../inputs/2001/txla_bulk_ERAI_2001.nc
    frc_file_02 :
    ../inputs/2001/txla_flx_ICOADS_AVHRR_SST_2001.nc, ../inputs/2002/txla_flx_ICOADS_AVHRR_SST_2002.nc
    bry_file_01 :
    ../inputs/2001/txla2_bry_2001_glo_ReAna_v4_o2woa.nc, ../inputs/2002/txla2_bry_2002_glo_ReAna_v4_o2woa.nc
    clm_file_01 :
    ../inputs/2001/txla2_clm_2001_01_glo_ReAna_v4_o2woa.nc, ../inputs/2001/txla2_clm_2001_02_glo_ReAna_v4_o2woa.nc, ../inputs/2001/txla2_clm_2001_03_glo_ReAna_v4_o2woa.nc, ../inputs/2001/txla2_clm_2001_04_glo_ReAna_v4_o2woa.nc, ../inputs/2001/txla2_clm_2001_05_glo_ReAna_v4_o2woa.nc, ../inputs/2001/txla2_clm_2001_06_glo_ReAna_v4_o2woa.nc, ../inputs/2001/txla2_clm_2001_07_glo_ReAna_v4_o2woa.nc, ../inputs/2001/txla2_clm_2001_08_glo_ReAna_v4_o2woa.nc, ../inputs/2001/txla2_clm_2001_09_glo_ReAna_v4_o2woa.nc, ../inputs/2001/txla2_clm_2001_10_glo_ReAna_v4_o2woa.nc, ../inputs/2001/txla2_clm_2001_11_glo_ReAna_v4_o2woa.nc, ../inputs/2001/txla2_clm_2001_12_glo_ReAna_v4_o2woa.nc, ../inputs/2002/txla2_clm_2002_01_glo_ReAna_v4_o2woa.nc
    script_file :
    spos_file :
    /scratch/user/d.kobashi/inputs/stations.in
    NLM_LBC :
    EDGE: WEST SOUTH EAST NORTH zeta: Che Che Che Clo ubar: Shc Shc Shc Clo vbar: Shc Shc Shc Clo u: Rad Rad Rad Clo v: Rad Rad Rad Clo temp: Rad Rad Rad Clo salt: Rad Rad Rad Clo dye_01: Gra Gra Gra Clo dye_02: Rad Rad Rad Clo dye_03: Rad Rad Rad Clo dye_04: Rad Rad Rad Clo tke: Gra Gra Gra Clo
    svn_url :
    https:://myroms.org/svn/src
    svn_rev :
    code_dir :
    /scratch/user/d.kobashi/source_code/COAWST/COAWST.r960-dev
    header_dir :
    /home/d.kobashi/TXLA_ROMS_reana/work_20yr_obc
    header_file :
    txla2.h
    os :
    Linux
    cpu :
    x86_64
    compiler_system :
    ifort
    compiler_command :
    /software/easybuild/software/impi/5.0.1.035-iccifort-2015.0.090/bin64/mpiifort
    compiler_flags :
    -heap-arrays -fp-model fast -mt_mpi -ip -O3 -msse2 -free
    tiling :
    010x012
    history :
    Tue Jul 24 11:04:43 2018: /opt/nco/ncks -D 4 -t 8 /copano/d1/shared/TXLA_ROMS/output_20yr_obc/2001/ocean_his_0015.nc --cnk_dmn ocean_time,4 --cnk_dmn eta_rho,8 --cnk_dmn eta_u,8 --cnk_dmn eta_v,8 --cnk_dmn eta_psi,8 --cnk_dmn xi_rho,16 --cnk_dmn xi_u,16 --cnk_dmn xi_v,16 --cnk_dmn xi_psi,16 --cnk_dmn s_rho,2 --cnk_dmn s_w,2 --output /copano/d2/shared/TXLA_ROMS/output_20yr_obc/2001/ocean_his_0015.nc ROMS/TOMS, Version 3.7, Monday - July 18, 2016 - 10:38:26 PM
    ana_file :
    /home/d.kobashi/TXLA_ROMS_reana/Functionals/ana_btflux.h, /home/d.kobashi/TXLA_ROMS_reana/Functionals/ana_sponge.h, /home/d.kobashi/TXLA_ROMS_reana/Functionals/ana_nudgcoef.h, /home/d.kobashi/TXLA_ROMS_reana/Functionals/ana_stflux.h
    CPP_options :
    TXLA2, ANA_BPFLUX, ANA_BSFLUX, ANA_BTFLUX, ANA_NUDGCOEF, ANA_SPFLUX, ANA_SPONGE, ASSUMED_SHAPE, AVERAGES, BULK_FLUXES, CURVGRID, DEFLATE, DIAGNOSTICS_TS, DIAGNOSTICS_UV, DIFF_GRID, DJ_GRADPS, DOUBLE_PRECISION, EMINUSP, GLS_MIXING, HDF5, KANTHA_CLAYSON, LONGWAVE, MASKING, MIX_GEO_TS, MIX_S_UV, MPI, NONLINEAR, NONLIN_EOS, N2S2_HORAVG, POWER_LAW, PROFILE, QCORRECTION, K_GSCHEME, RADIATION_2D, !RST_SINGLE, SALINITY, SOLAR_SOURCE, SOLVE3D, SPLINES, SPHERICAL, STATIONS, T_PASSIVE, TS_MPDATA, TS_DIF2, UV_ADV, UV_COR, UV_U3HADVECTION, UV_C4VADVECTION, UV_LOGDRAG, UV_VIS2, VAR_RHO_2D, VISC_GRID, WTYPE_GRID
    NCO :
    netCDF Operators version 4.7.6-alpha04 (Homepage = http://nco.sf.net, Code = http://github.com/nco/nco)

Add a lazilly calculated vertical coordinates

Write equations to calculate the vertical coordinate. These will be only evaluated when data is requested. Information about the ROMS vertical coordinate can be found (here)[https://www.myroms.org/wiki/Vertical_S-coordinate]

In short, for Vtransform==2 as used in this example,

\(Z_0 = (h_c \, S + h \,C) / (h_c + h)\)

\(z = Z_0 (\zeta + h) + \zeta\)

where the variables are defined as in the link above.

[3]:
if ds.Vtransform == 1:
    Zo_rho = ds.hc * (ds.s_rho - ds.Cs_r) + ds.Cs_r * ds.h
    z_rho = Zo_rho + ds.zeta * (1 + Zo_rho/ds.h)
elif ds.Vtransform == 2:
    Zo_rho = (ds.hc * ds.s_rho + ds.Cs_r * ds.h) / (ds.hc + ds.h)
    z_rho = ds.zeta + (ds.zeta + ds.h) * Zo_rho

ds.coords['z_rho'] = z_rho.transpose()   # needing transpose seems to be an xarray bug
ds.salt
<ipython-input-3-8742ef454e3d>:8: FutureWarning: This DataArray contains multi-dimensional coordinates. In the future, these coordinates will be transposed as well unless you specify transpose_coords=False.
  ds.coords['z_rho'] = z_rho.transpose()   # needing transpose seems to be an xarray bug
[3]:
Show/Hide data repr Show/Hide attributes
xarray.DataArray
'salt'
  • ocean_time: 2
  • s_rho: 30
  • eta_rho: 191
  • xi_rho: 371
  • dask.array<chunksize=(1, 30, 191, 371), meta=np.ndarray>
    Array Chunk
    Bytes 17.01 MB 8.50 MB
    Shape (2, 30, 191, 371) (1, 30, 191, 371)
    Count 3 Tasks 2 Chunks
    Type float32 numpy.ndarray
    2 1 371 191 30
    • Cs_r
      (s_rho)
      float64
      dask.array<chunksize=(30,), meta=np.ndarray>
      long_name :
      S-coordinate stretching curves at RHO-points
      valid_min :
      -1.0
      valid_max :
      0.0
      field :
      Cs_r, scalar
      Array Chunk
      Bytes 240 B 240 B
      Shape (30,) (30,)
      Count 2 Tasks 1 Chunks
      Type float64 numpy.ndarray
      30 1
    • lon_rho
      (eta_rho, xi_rho)
      float64
      dask.array<chunksize=(191, 371), meta=np.ndarray>
      long_name :
      longitude of RHO-points
      units :
      degree_east
      standard_name :
      longitude
      field :
      lon_rho, scalar
      Array Chunk
      Bytes 566.89 kB 566.89 kB
      Shape (191, 371) (191, 371)
      Count 2 Tasks 1 Chunks
      Type float64 numpy.ndarray
      371 191
    • hc
      ()
      float64
      20.0
      long_name :
      S-coordinate parameter, critical depth
      units :
      meter
      array(20.)
    • h
      (eta_rho, xi_rho)
      float64
      dask.array<chunksize=(191, 371), meta=np.ndarray>
      long_name :
      bathymetry at RHO-points
      units :
      meter
      field :
      bath, scalar
      Array Chunk
      Bytes 566.89 kB 566.89 kB
      Shape (191, 371) (191, 371)
      Count 2 Tasks 1 Chunks
      Type float64 numpy.ndarray
      371 191
    • lat_rho
      (eta_rho, xi_rho)
      float64
      dask.array<chunksize=(191, 371), meta=np.ndarray>
      long_name :
      latitude of RHO-points
      units :
      degree_north
      standard_name :
      latitude
      field :
      lat_rho, scalar
      Array Chunk
      Bytes 566.89 kB 566.89 kB
      Shape (191, 371) (191, 371)
      Count 2 Tasks 1 Chunks
      Type float64 numpy.ndarray
      371 191
    • Vtransform
      ()
      int32
      2
      long_name :
      vertical terrain-following transformation equation
      array(2, dtype=int32)
    • ocean_time
      (ocean_time)
      datetime64[ns]
      2001-08-01 2001-08-08
      long_name :
      time since initialization
      field :
      time, scalar, series
      array(['2001-08-01T00:00:00.000000000', '2001-08-08T00:00:00.000000000'],
            dtype='datetime64[ns]')
    • s_rho
      (s_rho)
      float64
      -0.9833 -0.95 ... -0.05 -0.01667
      long_name :
      S-coordinate at RHO-points
      valid_min :
      -1.0
      valid_max :
      0.0
      positive :
      up
      standard_name :
      ocean_s_coordinate_g2
      formula_terms :
      s: s_rho C: Cs_r eta: zeta depth: h depth_c: hc
      field :
      s_rho, scalar
      array([-0.983333, -0.95    , -0.916667, -0.883333, -0.85    , -0.816667,
             -0.783333, -0.75    , -0.716667, -0.683333, -0.65    , -0.616667,
             -0.583333, -0.55    , -0.516667, -0.483333, -0.45    , -0.416667,
             -0.383333, -0.35    , -0.316667, -0.283333, -0.25    , -0.216667,
             -0.183333, -0.15    , -0.116667, -0.083333, -0.05    , -0.016667])
    • z_rho
      (s_rho, xi_rho, eta_rho, ocean_time)
      float64
      dask.array<chunksize=(30, 371, 191, 1), meta=np.ndarray>
      Array Chunk
      Bytes 34.01 MB 17.01 MB
      Shape (30, 371, 191, 2) (30, 371, 191, 1)
      Count 35 Tasks 2 Chunks
      Type float64 numpy.ndarray
      30 1 2 191 371
  • long_name :
    salinity
    time :
    ocean_time
    field :
    salinity, scalar, series

A naive vertical slice

Create a slice using the s-coordinate as the vertical dimension is typically not very informative.

[4]:
ds.salt.isel(xi_rho=50, ocean_time=0).plot()
[4]:
<matplotlib.collections.QuadMesh at 0x7f1ce22a2a30>
../_images/examples_ROMS_ocean_model_9_1.png

We can feed coordinate information to the plot method to give a more informative cross-section that uses the depths. Note that we did not need to slice the depth or longitude information separately, this was done automatically as the variable was sliced.

[5]:
section = ds.salt.isel(xi_rho=50, eta_rho=slice(0, 167), ocean_time=0)
section.plot(x='lon_rho', y='z_rho', figsize=(15, 6), clim=(25, 35))
plt.ylim([-100, 1]);
../_images/examples_ROMS_ocean_model_11_0.png

A plan view

Now make a naive plan view, without any projection information, just using lon/lat as x/y. This looks OK, but will appear compressed because lon and lat do not have an aspect constrained by the projection.

[6]:
ds.salt.isel(s_rho=-1, ocean_time=0).plot(x='lon_rho', y='lat_rho')
[6]:
<matplotlib.collections.QuadMesh at 0x7f1ce20a4fd0>
../_images/examples_ROMS_ocean_model_13_1.png

And let’s use a projection to make it nicer, and add a coast.

[7]:
proj = ccrs.LambertConformal(central_longitude=-92, central_latitude=29)
fig = plt.figure(figsize=(15, 5))
ax = plt.axes(projection=proj)
ds.salt.isel(s_rho=-1, ocean_time=0).plot(x='lon_rho', y='lat_rho',
                                          transform=ccrs.PlateCarree())

coast_10m = cfeature.NaturalEarthFeature('physical', 'land', '10m',
                                        edgecolor='k', facecolor='0.8')
ax.add_feature(coast_10m)
[7]:
<cartopy.mpl.feature_artist.FeatureArtist at 0x7f1ce21bc8e0>
/home/docs/checkouts/readthedocs.org/user_builds/xray/conda/v0.15.1/lib/python3.8/site-packages/cartopy/io/__init__.py:260: DownloadWarning: Downloading: http://naciscdn.org/naturalearth/10m/physical/ne_10m_land.zip
  warnings.warn('Downloading: {}'.format(url), DownloadWarning)
../_images/examples_ROMS_ocean_model_15_2.png
[ ]: