# Terminology¶

Xarray terminology differs slightly from CF, mathematical conventions, and pandas; so we’ve put together a glossary of its terms. Here, arr * refers to an xarray* DataArray in the examples. For more complete examples, please consult the relevant documentation.

DataArray

A multi-dimensional array with labeled or named dimensions. DataArray objects add metadata such as dimension names, coordinates, and attributes (defined below) to underlying “unlabeled” data structures such as numpy and Dask arrays. If its optional name property is set, it is a named DataArray.

Dataset

A dict-like collection of DataArray objects with aligned dimensions. Thus, most operations that can be performed on the dimensions of a single DataArray can be performed on a dataset. Datasets have data variables (see Variable below), dimensions, coordinates, and attributes.

Variable

A NetCDF-like variable consisting of dimensions, data, and attributes which describe a single array. The main functional difference between variables and numpy arrays is that numerical operations on variables implement array broadcasting by dimension name. Each DataArray has an underlying variable that can be accessed via arr.variable. However, a variable is not fully described outside of either a Dataset or a DataArray.

Note

The Variable class is low-level interface and can typically be ignored. However, the word “variable” appears often enough in the code and documentation that is useful to understand.

Dimension

In mathematics, the dimension of data is loosely the number of degrees of freedom for it. A dimension axis is a set of all points in which all but one of these degrees of freedom is fixed. We can think of each dimension axis as having a name, for example the “x dimension”. In xarray, a DataArray object’s dimensions are its named dimension axes, and the name of the i-th dimension is arr.dims[i]. If an array is created without dimension names, the default dimension names are dim_0, dim_1, and so forth.

Coordinate

An array that labels a dimension or set of dimensions of another DataArray. In the usual one-dimensional case, the coordinate array’s values can loosely be thought of as tick labels along a dimension. There are two types of coordinate arrays: dimension coordinates and non-dimension coordinates (see below). A coordinate named x can be retrieved from arr.coords[x]. A DataArray can have more coordinates than dimensions because a single dimension can be labeled by multiple coordinate arrays. However, only one coordinate array can be a assigned as a particular dimension’s dimension coordinate array. As a consequence, len(arr.dims) <= len(arr.coords) in general.

Dimension coordinate

A one-dimensional coordinate array assigned to arr with both a name and dimension name in arr.dims. Dimension coordinates are used for label-based indexing and alignment, like the index found on a pandas.DataFrame or pandas.Series. In fact, dimension coordinates use pandas.Index objects under the hood for efficient computation. Dimension coordinates are marked by * when printing a DataArray or Dataset.

Non-dimension coordinate

A coordinate array assigned to arr with a name in arr.coords but not in arr.dims. These coordinates arrays can be one-dimensional or multidimensional, and they are useful for auxiliary labeling. As an example, multidimensional coordinates are often used in geoscience datasets when the data’s physical coordinates (such as latitude and longitude) differ from their logical coordinates. However, non-dimension coordinates are not indexed, and any operation on non-dimension coordinates that leverages indexing will fail. Printing arr.coords will print all of arr’s coordinate names, with the corresponding dimension(s) in parentheses. For example, coord_name (dim_name) 1 2 3 ....

Index

An index is a data structure optimized for efficient selecting and slicing of an associated array. Xarray creates indexes for dimension coordinates so that operations along dimensions are fast, while non-dimension coordinates are not indexed. Under the hood, indexes are implemented as pandas.Index objects. The index associated with dimension name x can be retrieved by arr.indexes[x]. By construction, len(arr.dims) == len(arr.indexes)

name

The names of dimensions, coordinates, DataArray objects and data variables can be anything as long as they are hashable. However, it is preferred to use str typed names.

scalar

By definition, a scalar is not an array and when converted to one, it has 0 dimensions. That means that, e.g., int, float, and str objects are “scalar” while list or tuple are not.

duck array

Duck arrays are array implementations that behave like numpy arrays. They have to define the shape, dtype and ndim properties. For integration with xarray, the __array__, __array_ufunc__ and __array_function__ protocols are also required.